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that format to account for the effects of the conducting body via the
geometrical theory of diffraction. The technique extends the moment
method to handle many problems that cannot be solved by GTD or the
moment method alone.

In general, arbitrary radiators located on or near canonical
shapes or combinations thereof can be solved using the hybrid technique.
Electromagnetic parameters for which the hybrid technique can solve
include the near and far fields, current distributions, impedances,
and scattering data. In this paper, wire antennas are analyzed to find

their input impedance when they are located near perfectly-conducting
circular cylinders.

The purpose of this paper is to present the technique and
demonstrate some of its facility and its accuracy.,, Three orthogonal
orientations were identified and antennas to matchy% em were used.

For each case, the hybrid solution is checked with one of three
independent solutions; an MM-eigenfunction solution, image theory,

or experimental measurement. The hybrid technique was\ verified for
these orthogonal orientations. Thus a more general radiator with an
arbitrary combination of orientations could be scived with confidence.
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CHAPTER 1
INTRODUCTION

In recent years the analysis of electromagnetic problems has
been advanced tremendously by the digital computer and use of two
powerful theories, the method of moments and the geometrical theory
of diffraction. The moment method, MM, is a numerical technique which
converts an integral equation, containing field terms and appropriate
source terms that describe the electromagnetic problem, into a system
of linear algebraic equations. The equations have unknown coefficients
related to an expansion of a current distribution on the structure of
interest. The moment method is characterized as a low frequency
method since its practical use is limited to structures that are not
electrically large. The geometrical theory of diffraction, GTD, is a
ray optical method whose solution is based on the asymptotic approxi-
mation to the integral defining the electromagnetic problem. GTD is
characterized as a high frequency method as it is applicable to
bodies that are arbitrarily large electrically. Both of these methods
are powerful computational tools which permit application to a wide
range of problems. In this paper these two techniques are combined
into a single technique called the "hybrid technique." The hybrid

technique permits one to solve many problems that are not solvable by
either technique alone.

The hybrid technique presented in this paper is a method for
solving electromagnetic problems in which an antenna or other
discontinuity is located on or near a conducting body, such as antennas
on ships or aircraft, feed antennas near the reflecting surfaces of
reflector antennas, and slots or other discontinuities on conducting
surfaces. The technique solves these kinds of problems by properly
analyzing the interaction between the antenna or scatterer and the
conducting body. The hybrid technique accomplishes this by casting
the antenna structure in a moment method format then modifying that
format to account for the effects of the conducting body via the
geometrical theory of diffraction. The technique extends the
moment method to handle many problems that cannot be solved by GTD
or the moment method alone.

The basic hybrid technique used in this paper was first described
in the literature by Thiele and Newhouse [1]. In that paper the
technique was applied to antennas on and near finite planar surfaces.
The moment method solution was modified to account for the finite
planar surfaces using wedge diffraction theory. In the present paper
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a hybrid technique for combining the moment method treatment of wire
antennas with the GTD for curved surfaces will be presented. Specifi-
cally, wire antennas will be analyzed near perfectly conducting circular
cylinders.

The wire antenna will be cast in a moment method format given by
Richmond [2,3] in his computer program for thin-wire structures. The
use of piecewise sinusoidal basis functions in this method will be
exploited. The effects of the cylinder will be found using GTD. The
field expressions are obtained using the uniform geometrical theory of
diffraction for an edge given by Kouyoumjian and Pathak [4]. The
application of the GTD to the cylinder is based on techniques presented
by Marhefka [5].

The hybrid technique as presented here is applicable to a much
broader class of problems than those that are demonstrated. In general,
arbitrary radiators located on or near canonical shapes or combinations
thereof can be solved using the hybrid technique. The arbitrary
radiator would be modeled with a thin-wire grid and set up in the
moment method format. The conducting body is restricted to canonical
shapes for which a GTD solution exists. Electromagnetic parameters
for which the hybrid technique can solve include the near and far
fields, current distributions, impedances, and scattering data. Of
course, many geometries present special problems for which the
technique will fail and therefore need to be modified. For example,
part of the radiator might lie in the caustic of a needed GTD field.

It is impossible to cover all the possible applications of the
hybrid technique in one paper. The purpose of this paper is to
present the technique and demonstrate some of its facility and its
accuracy. To accomplish this, various antenna radiators are considered
in the presence of circular cylinders. Chapter II provides the
theoretical background of the methods used in the hybrid technique.
The method of moments with the specializations used is first described.
Then the GTD expressions used in this paper are presented. In
Chapter III the hybrid technique is described in detail. The very
effective way in which GTD is incorporated into the thin-wire theory
is presented and demonstrated.

Chapter IV is the results section in which the hybrid technique
is applied to find the input impedance of antennas as a function of
their distance from the circular cylinder. For each case, the hybrid
solution is checked with one of three independent solutions, an
MM-eigenfunction solution, image theory, or experimental measurement.
Chapter V concludes the paper with a summary and discussion.
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CHAPTER II

THEORETICAL BACKGROUMND

In this chapter brief descriptions of the methods which are
combined to form the hybrid technique used in this paper are presented.
Since the development of these methods is not the subject of this paper,
the descriptions will be short and not necessarily complete. Only
the parts of the theories used in this paper will be presented. More
complete explanations and developments can be found in tihe references
cited.

The moment method part of the hybrid technique is the speciali-
zation used by Richmond in his thin-wire computer program [3]. The
GTD part of the hybrid technique is programmed as presented by
Marhefka [5]. These two references provided the major material for j
their respective theories in the development of the hybrid technique 1
of this paper. 4

A. Moment Method

A clear description of moment method is given by Stutzman and
Thiele [6]. The moment method is a procedure for reducing an integral
equation of the first kind of the form

1(z') K(z,2') dz' = - E'(2) (1)

over structure

to a system of simultaneous linear algebraic equations in terms of
the unknown current distribution I(z'). Once the current is krown,
determination of radiation patterns and impedance is fairly straight-
forward. Electromagnetic radiation problems can almost always be
expressed as integral equations in the form of Equation (1). The
inhomogeneous source terms are on the right and the unknown currents
are within the integral sign on the left.

1. Weighted residuals and the moment method

A general moment method procedure can be accomplished by using
the method of weighted residuals [6]. The unknown current I(z') is
expanded on the structure of interest using an appropriate expansion




function, Jp(z'). Equation (1) becomes a sum of the expansion terms
as follows:

{ N :
8 J'Jn(z‘)K(z,z')dz' = - E'(2). (2)
: n=1

over structure

A residual R is defined to be the sum of the tangential components |
of scattered and incident fields |

3 i
tan i Etan + (3)

R=E
At points on the surface of the perfectly conducting structure of
interest the residual must be zero. So

Re )1
| ;

Jn(z')K(z,z')dz' + Ei(z) =0 (4)
n=1

n
over structure

where z is on the structure's surface. In the method of weighted

' residuals the I_'s are found so that the residual is forced to zero
in an average sénse. The weighted integrals of the residual are set
equal to zero as

W Rdz =0,  m=1,2,-+-N, (5)

E; over structure

i where W, is the weighting or test function. The choice of expansion

2 e and weighting functions is very important and has been the subject

of many papers. As a rule of thumb, it is desirable to choose
expansion functions that closely resemble the anticipated form of the .
current on the structure of interest. It is often advantageous to use
the same functions for the weighting functions as used for the
expansion functions. This makes the procedure a Galerkin's method.

b If the structure of interest is an antenna structure modeled
by thin-wire segments, more specific expressions can be described.
Substituting Equation (3) into Equation (5) gives
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W - .i =
J ' ES ar + fwm E' dv =0,

=
3
f > over over
{ X wire wire
e U o e (6)
i Denoting the_scattered field from the n-th expansion function of the
current by Eﬁ, the mn-th term of the moment method impedance matrix
is
= . S
{ Zmn f Wm En de (7)
| ‘ o over
| ' wire
‘ 2 and the m-th voltage matrix element is
‘ e o .
5 vm--f s Bl (8)
‘ over
wire

Wy is the m-th testing function Tocated interior to the wire and on

jts axis. Rigorously, the test function should be located on the

surface of the wires making Equations (7) and (8) double integrals over

the wire surfaces. Placing the test function on the axis is an

extension of the electric field boundary condition for the sake of

mathematical simplification. This approximation makes it necessary to
i rgggrict the method to wires for which the radius is less than about

. A.

The method of weighted residuals is equivalent to the steps in
the usual development of the moment method where a linear operator
and an appropriate inner product are defined. In terms of these con-
cepts, Equations (7) and (8) are

i o e g :.-g_'.-" A A it R

Zon = <WpsL(3p)

(9)

v

n <Wm,Ei>

1 | where <,> denotes the inner product and L is the linear operator acting
on Jy to give k.
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2. Reaction integral equation

A general approach to the formulation of boundary value problems
was presented by Rumsey [7] when he introduced a physical observable
called reaction, His formulation resulted in the reaction integral
equation in electromagnetic theory. Reaction is a measure of coupling
between two sources. If the weighting function is taken to be a test
source, then the impedance matrix elements given by Equation (7) may be
taken as a calculation of the coupling between the m-th test source
and the field from the n-th expansion function or actual source.
Similarly, the m-th voltage matrix element in Equation (8) is inter-
preted as the coupling between the m-th test source and the incident
E-field. In both cases the m-th test source current is reacted with
the E-field from anotner source.

For the very general geometry of Figure 1, a more general

Si

S

Figure 1. Test source (Jpy,My) inside conducting
body surface S.

reaction integral equation is formed from which Equations (7) and (8)
are found. Let (Jp,My) be the surface current densities of a test
source and Tet (Eﬁ,ﬁhT be the fields from that source. Equivalent
surface-current densities are introduced

J =nxH
S (10)
M; =Exn

on the body S. (Jg,Mg) radiate the fields (ES,F®) in free space and
replace the conducting body. The reaction integral and generalization
of Equation (6) becomes




o

i) Jhas

b e

-~y

v

fj (Ifm-l;'s - A F)ds + ﬂ (Em-h'i - ﬁm-ﬁi)ds =0,

S

= 1.2, N, (11)

where the integrals are over the test source's surface. The physical
interpretation is that there is zero reaction or coupling between the
test source and the sum of the incident and scattered fields. This
is clearly equivalent to the weighted residual interpretation of
Equation (5). If the fields from the n-th expansion function of the

actual Egurce current are given by (Eﬁ, ), the sum of the N fields
being (E>,F®), then for the general mn-tn element in the impedance

matrix
oy = || B - By (12)
3
Similarly, the m-th voltage element is
N < i i
e - ff @ - R, (13)
s

For the antenna situations of interest in this paper, (E',A") originate
from impressed currents J} located on s.

3. Pijecewise sinusoidal Galerkin method

The piecewise sinusoidal function as shown in Figure 2 is one of

}

1 — 7
Zn...| zn er-l

Figure 2. Typical two segment dipole with
piecewise sinusoidal distribution.
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the most useful basis functions for wires in free space. It may be
expressed mathematically for each z-directed segment by

I sinhy(zz-z) + Izsinhy(z-z])

sinhyd (14)

I1(z) =

where I7 and I2 are the endpoint currents, y is the complex propagation
constant of the medium, and d=2z3-z7 is the source length. A piece-
wise sinusoidal approximation to a current distribution is given in
Figure 3. Note that each piecewise sinusoidal function spans two

|

Figure 3. Current distribution modeled by overlapping
piecewise sinusoidal modes.

connected segments and that each interior segment contains two piece-
wise sinusoidal functions.

Experience has shown that the use of piecewise sinusoidal testing
functions with piecewise sinusoidal expansion functions leads to a
procedure that is numerically efficient and highly accurate.

Consider the situation wherein an arbitrary number of segments are
coincident with the z-axis, For example, a dipole antenna with N seg-
ments using Equations (12) and (14) and the thin-wire assumption, the
mn-th impedance matrix element is




siny(z-z. 1) .
m-1 s
is mn §1hy1zm_]-zm| ® E: dz

zm+’|
S sinY(zm+]-z)
% §Tny1zm-zm+]1

E-E: dz ', (15)

m

Eﬁ is needed to carry out Equation (15). This field may be found in
a straightforward manner and the derivation is included in many
electromagnetic texts including [6]. The geometry is shown in
Figure 4. For the piecewise sinusoidal excitation current of

Equation (14), E> is %

Figure 4. z-directed monopole segment source with
the observation point (p,z).
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n i e 0
Ep- m I]e -12e sinhyd

-vR,
+ (I]coshyd-lz)e cos o,

YR,
+ (Izcoshyd-I])e coso, (16)

-YR,
= n e
£z * TrsTnhyd l}lrlzwsh b e

~YR,
e
+ (IZ-I]coshyd) R :] (17)

where n is the impedance of the medium. The evaluation of Equation
(15) may be carried out without difficulty by numerical integration
or by Si and Ci integrals for some special geometries.

The piecewise sinusoidal Galerkin method treated here is the
procedure used for the thin-wire antennas of this paper. The importance
of this particular specialization of the moment method for the hybrid
technique will be discussed in Chapter III.

B. Geometrical Theory of Diffraction

The geometrical theory of diffraction (GTD) is characterized as a
high frequency technique that allows a complicated structure to be
approximated by basic shapes. These basic shapes represent canonical
problems in GTD. Mathematically, GTD is an asymptotic approximation
to an integral which defines the electromagnetic problem. The GTD
is a ray optical technique which allows physical insight into the
various scattering and diffraction mechanisms involved. Consequently,
the dominant or significant scattering or diffraction mechanism for a
given geometry can be identified leading to an accurate engineering
solution.

Again, only the solutions needed for the problems solved in

this paper are presented. More cases and derivations including
more complete explanations are found in the literature cited.
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In the format of GTD, the total electric field may be represented
as

F-thi+t+0d . (18)

The E4 field is the incident field in free space. E' is the field
reflected from the surface of the structure of interest. is the
diffracted field from discontinyities of the structure, such as edges,
corners, or curved surfaces. u'! and u" are unit step functions to cut
off their corresponding field at the incident and reflection shadow
boundaries. The extent of these fields is determined by geometrical
optics (GO). The surfaces in this paper ar% all perfectly conducting
and the medium is free space. Also the eJw! time dependence is assumed
and not explicitly shown.

1. Geometrical optics field

The incident electric field E' is considered to be a spherical
wave for the equations given in this paper. Other cases have been
treated in the literature but the importance of using the spherical
wave expressions in the hybrid technique will be discussed in the next
chapter.

The reflected electric field from a curved surface S, as shown in
Figure 5, is given in geometrical optics terms by

} e 7
g TR R el BRI (19)
5 (07%s) (p1p*s)

3 (Q ) is the incident field at the reflection point (QR) on the
surface and R is the dyadic reflection coefficient such that

Unit vectors el and e are parallel to the plane of incidence and the

unit vector el is perpend1cu1ar to the plane of incidence. The point
of reflection QR is found from the laws of reflection which state

that the angle of incidence is equal to the angle of reflection. That
is

S ] apasn (21)

and that the incident, reflected, and surface normal vectors all lie
in the same plane

1
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SOURCE
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'_Q>

SURFACE S

POINT OF
REFLECTION Qg

Figure 5. Reflection by a smooth
convex surface.

~

Ixn=S5Sxn . (22)

Finding Qg will be considered in more detail in the last section of
this chapter.

1

43 The quantities pT and pE are the principal radii of curvature of
the reflected wavefront at the reflection point Qp. Kouyoumjian and
Pathak [4] show how to find these values for an arbitrary wavefront by
diagonalizing the curvature matrix for the reflected wavefront given

o

%% by Deschamps [8]. The wavefront is incident on the curved surface S
# shown in Figure 5 at the reflection point Qg. Unit vectors ey and ep
i | are in the principal direction of S at Qp with surface radii of
. curvature Ry and Rp. For the case where the incident field is
6 spherical, the principal radii of curvature of the reflected wavefront
E‘ are given by Kouyoumjian and Pathak as
}v

1 1 1 sin292 sinze]
32 i e s
’ °],£7 5" coso 1 2
1 2
F 1 sinze2 sinze] 4 (23)
I + - + - ;
"V cos®e' | N e KR
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S' is the radius of curvature of the incident wavefrgnt at Qg, 67 is
the angle between the direction of the incident ray I and unit vector

e}, and 62 is the angle between the direction of the incident ray I
and the unit vector ej.

2. Diffraction by a curved wedge

The curved wedge problem is illustrated in Figures 6 and 7. This
report will consider finite cylinders where the ends of the cylinders
are formed by a flat surface with a resulting curved wedge. The
diffracted field due to the curved wedge is analyzed using GTD
techniques developed by Kouyoumjian and Pathak [4].

The diffracted field from the curved wedge is written in the

Bs) vEp) - B (pdey e - (24)

The p is the distance between the caustic at the edge and the second
caustic of the diffracted ray. It is given by

form

;_= M P (25)

where p;, Ne, ag Will be defined shortly. The diffraction coefficients
for the curved wedge are extended from those for wedge diffraction to
allow the diffracted field to be continuous at the incident and
reflected shadow boundaries. To accomplish this the appropriate
distance parameters L in each of the transition functions make the

fields continuous. The diffraction coefficient for the curved wedge
is given by

o-in/4 2 sin(Z)FLkLTa(8")]
ZnJE?Esineo cos(%#-cos(%:o

{}ot (%%%:) FlkL™a*(8%)]

Dy n(#:9'58,) =

-+

TI-B+ ro +
+cot (1) FLKL™a(6")] (26)
where a(B) = 2 cos2 8/2 and a+(8) = 2 cos2 SZI%:El .
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S' is the radius of curvature of the incident wavefrgnt at QR, 81 is
the angle between the direction of the incident ray I and unit vector
e}, and 62 is the angle between the direction of the incident ray 1
and the unit vector ep.

2. Diffraction by a curved wedge

The curved wedge problem is illustrated in Figures 6 and 7. This
report will consider finite cylinders where the ends of the cylinders
are formed by a flat surface with a resulting curved wedge. The
diffracted field due to the curved wedge is analyzed using GTD
techniques developed by Kouyoumjian and Pathak [4].

The diffracted field from the curved wedge is written in the
form

Es) VB - B3 D) [y e . (24)

The p is the distance between the caustic at the edge and the second
caustic of the diffracted ray. It is given by

1§ ong S o5
e i a sinzs i
Pa %% 0

where p;, Ne» de Will be defined shortly. The diffraction coefficients
for the curved wedge are extended from those for wedge diffraction to
allow the diffracted field to be continuous at the incident and
reflected shadow boundaries. To accomplish this the appropriate
distance parameters L in each of the transition functions make the
fields continuous. The diffraction coefficient for the curved wedge

is given by

G-in/a 2 sin(Z)FCkLTa(87)]

2n/§?§sineo cos(go-cos(%f;
cot ne” F[kL™Ma*(s*
- a (s )]

cot (15_?1_") F[kL'”°a(e*)]} (26)

2 cos2 B/2 and a+(B) = 2 cos2 igﬂ%ﬂil .

Dg p(¢s9"48,) =

-+

+

where a(8)
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Figure 6. Geometry for the three-dimensional
curved wedge diffraction probiem.
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Figure 7. The curved wedge in the plane
perpendicular to e at QE.
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The Dg coefficient applies for the E-field vector parallel to the
edge ?i.e.. acoustically soft E|gdqge = 0) while Dy applies to the
field component perpendicular to the edge (i.e., acoustically hard

%E‘ = 0). The angular relationships are expressed by 8=6+=¢;¢'.
Edge
The transition function F(x) is

: pd 2
F(x) = 2j |Vx| e3* ‘f eV 4z (27)
Vx|

The distance parameter associated with the incident field is given by

i e
3 s(pe+s)p]pzs1n By s

p;(p}+s)(p;+s)

The distance parameter associated with the reflected field from the
surface with superscript o (reflection boundary at =-¢') and the
reflected field from the surface with superscript n (reflection
boundary (2n-1)n-¢') is given by

r o e S
i s(pe+s)p]pzs1n 80 (583

Lr
og(p;+5)(o£+5)

The parameter pa is the radius of curvature of the incident wavefront
at the diffraction point Qf taken_in the plane containing the

» incident ray and the unit vector e which js tangent to the edge at Q.
For the case of spherical waves p;=s‘. p} and p; are the principal
radii of curvature of the incident wavefront at Qg. Similarly, o; and
p; are the principal radii of crrvature of the reflected wavefront at

Qg, which are found using Equation (23) for spherical wavefront inci-
dence also, the parameter of is the radius of curvature of the
reflected wavefront at Qp taken in the plane containing the reflected
ray and e. It is found using

RO R S e (30)
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where ; is the unit vector normal to the surface at Qe, ﬁe is the
associated unit normal to the edge directed away from the center of
curvature, and ag>0 is the radius of curvature of the edge at Q.

3. Specular point calculation

The previous sections presented the GO and GTD E-field expressions
assuming that the specular point QR and Qf were already known on the
surface. For special geometries they are often known intuitively.
Marhefka [5] has presented several methods for finding these points
for more general geometries. Greer and Burnside [9] have also investi-
gated various methods of finding edge diffraction points. The
reflection point QR on the surface of a circular cylinder is desired
when a nearby source and field point are known. A method presented by
Marhefka was modified to accomplish this. Figure 8 shows the geometry
for the determination of the reflection point on an elliptic cylinder.

( XC1 YC vzc)
OBSERVATION POINT

x
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(xg.,Yg12¢)
SOURCE
LOCATION

a
n

i ————

Figure 8. Geometry for determination of reflection
point on elliptic cylinder.
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To find the reflection point in the 1it zone, the laws of
reflection as given by Equations (21) and (22) are the starting point.
These equations are written such that

-F'T=J§_I_=FXT (3])

or
MxD M-+ {mM-T) (nxd =0, (32)

Note that the normalization factors may be removed. The incident and
observation vectors are written as follows

T(v,2) = Ix(v)i + Iy(v)9 + Iz(z)i
= (a cos v -xs)i + (b sin v -ys)j/ + (z-zs)i (33)
and
th)=%Wﬁ+d¢ﬂ§+%&ﬁ

(x.-a cos V)X + (y,-b sin vy + (z.-2)2 (34)

The normal to the curved surface is given in general by
ﬁ=£ex2=bcosvx+asinv§

or

n= nx(v)i + ny(v)gr ; (35)

Performing the necessary dot and cross products, Equation (32)
becomes two equations

f(vs2) = (n I +n 1 )(n,d -n d,)*(n d +n d )*

“(n_I_-n_1)=0 (36)

n
Xy 'yx

and
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g(v,z) = (anx+nny)dz + (nxdx+nydy)lz=0. (37)

Then the values of Equations (33), (34), and (35) are substituted into
Equation (36) with the fact a=elV, The equation is multiplied out
and like terms in a are collected so that a sixth order polynomial is
obtained given by

5 4 3 2 1

Coe® + Cga® + Cgat + Cya® + Cpa? + Clal C, = 0 (38)
where

C, = (a-b?) [aly +y.) + jb(x_+x )]

6 Yct's JORTR
S 2.2 : 22

Cg = - 2(a"+b") (x.y tyx ) - j4ab[(a®-b") + (x x.-y.y )]
A g o e

Cq = a(5b™-a") (y_+y.) + jb(5a"-b")(x_+x.)
L 3

C3 = 4(a"-b )(Xsyc+ysxc)

C, = Cy* (complex conjugate of C4)

C, = Cg*

C, = Cg* .

The six roots of the polynomial correspond to v in that

) -1 Im(a)
v = tan e % (39)

The value which is the true reflection point is found by determining
the v that minimizes the distance given by |T| + |d| , which is
necessary to satisfy Fermat's principle. lsing this v parameter
representing the reflection point in the x-y plane, the z-coordinate
can be found from Equation (37) to be

Wyt ("xdx + nldy)zS - (anx + nyly) z, ; (40)
r (ﬁxd* + nydy) - (nxlx + "ylj)
18
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The above method for finding the reflection point can be
considered exact. It is, however, slow for some applications and
other methods are presented in the references mentioned above.

In conclusion, the moment method and the GTD material presented
in this chapter are by no means complete. The material does, however,
provide the background and the equations necessary for the hybrid
technique developed in the next chapter. The expressions given here
are the ones used in the computer programs to obtain the results of
Chapter IV,
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CHAPTER III
THE HYBRID TECHNIQUE

In this chapter the hybrid technique is described in detail.
The various problems arising when GTD is combined with the moment
method are presented and solved. Results are included which demon-
strate the effectiveness of these solutions.

A. Description

The hybrid technique is used here to solve electromagnetic
problems in which antennas or other discontinuities are located on
or near a large conducting structure. The basic technique was first
presented in the literature by Thiele and Newhouse [1]. This method
consists of casting the antenna structure in a moment method format
and then modifying the generalized impedance matrix to account for
the effects of the conducting body via GTD.

Following the notation used by Thiele and Newhouse, the moment
method is applied to the antenna structure alone by expanding the

surface current J in a series of basis functions Jy, J2, J3 --+, such
that

N
J = E 56 N (41)

A linear operator L is defined to relate the expansion currents to
their electric fields. A set of weighting functions Wy, Wp, W3---
is selected and an inner product is defined so that,

N

nz] I, <t ,L(3,)> = <wm,E‘>, (42)

where Ei is the field incident on the antenna. This is the m-th row
of the system of N equations described in Section A of Chapter II
under the moment method. Equation (42) is represented as

[Z] (1) = (V). (43)
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The elements of this impedance matrix are those of the free space
impedance matrix since only the antenna structure has been considered
so far. These elements are given by

Zon = W, L(J)). (44)

The inner product forms a unitary space in which

<J, aE;, + bE,> = a<J, E;> + b<J, Ey> , (45)

1 2

where a and b are complex scalars. If aE] in Equation (45) represents
L(Jp) in Equation (44? (that is, the field due to Jn) and if bEp in
Equation (45) represents an additional field contribution to Zpy, (that
is also due to J, but not due to the field arriving directly), then

Zmﬁ = <Nm, aE1 + bE2>
=<W, L(3) +bL(3)> ,  a=1, b=b(m,n) (46)
or
Zmﬁ & <wm, L(Jn)> + <, bL(Jn)>
s iealy (47)

The superscript g indicates that Z%n is added to each impedance matrix
term to account for contributions at the m-th observation point due to
the J, fields scattered from the conducting body. Thus Equation (43)
becomes

LZ'} k1) = (v) (48)

where [Z'] is the generalized impedance matrix properly modified to
account for the presence of the scattering body as well as for the
antenna itself. Z3. elements are found with the aid of GTD. The
solution of Equation (48) is

(1) = [2'717" (V) (49)

where (I') is the current on the antenna structure located on or near
the conducting body. Thus the hybrid technique used in this paper is
a modification or extension of the moment method. This differs from
other approaches that consider extension of GTD via the method of
moments [10].
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The starting point for the hybrid technique used in this paper
is Richmond's thin-wire program [2,3]. Some reasons for this choice
are obvious. It is a very general and powerful technique for
modeling and solving a great variety of antenna and scattering problems
with relatively simple inputs to the computer code, it is widely known
and used, and its accuracy has been repeatedly demonstrated. The
practical limitation on its capabilities is the size of the impedance
matrix required by the geometry of the particular problem. The
computer must invert and solve this matrix. Long and expensive com-
puter runs become a problem if the structure is electrically large.

Another less obvious reason for choosing Richmond's thin-wire
approach is that it uses piecewise sinusoidal expansion and weighting
basis functions. The advantages of these functions other than rapid
convergence and the corresponding mode economy, are made clear in the
section of this chapter on integrating GTD with the moment method.

To facilitate a more detailed explanation of the hybrid
technique, its application to a specific geometry is presented. The
case chosen is a half-wave dipole, axially oriented, near a perfectly
conducting circular cylinder. The geometry is depicted in Figure 9.
The current distribution on the dipole near the cylinder is determined
and from this the input impedance is calculated. The choice of this
particular geometry and determination of the input impedance does not
imply restrictions on the hybrid technique described. This method can
be applied to an arbitrarily shaped radiator near any scattering
structure for which a GTD solution exists. It may be used to find near
and far fields and scattering data as well as current distributions
and input impedance.

The dipole in Figure 9 is divided into segments not longer than
a quarter wavelength in extent. These segments are grouped two at a
time to form modes. A moment method formulation of the dipole in
free space is first carried out by assuming a piecewise sinusoidal
current distribution on a particular two-segment mode. This test
mode current generates an E-field which is reacted with all of the
two-segment modes on the dipole. Each of these reactions gives an
impedance matrix term

Ly = E}(m) © 1 () @ (50)
Rec Mode k

Eq(i) is the E-field from test mode j at the receiving mode k. Ig(%)
1s the expansion current distribution also assumed to be piecewise
sinusoidal making this a Galerkin method. A row of the impedance
matrix is created by carrying out this integration for each expansion
mode on the dipole. The other rows are found by moving the test
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Figure 9. Half-wave dipole axially oriented a distance D from a
perfectly conducting circular cylinder of

radius A.
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current source to each mode in turn., The resulting free space
impedance matrix is a function of the dipole geometry alone. Knowing
the dipole source voltage and this impedance matrix allows for the
calculation of the dipole current distribution by solving the set of
simultaneous linear equations. Once the current is known, other
electromagnetic quantities follow directly. This is the technique

used in Richmond's thin-wire program [3] which is described in
ChaPter I1.

To calculate the effect of the circular cylinder, the hybrid
technique is applied to find a delta impedance matrix. When this
delta impedance matrix ([AZ]) is added to the dipole free space
impedance matrix ([Z]) the resulting modified impedance matrix ([Z'])
correctly considers the presence of the cylinder. Thus

[z]+[4z] = [Z'] (51)

where [Z'] is a function of the dipole and cylinder geometry alone and
is not source dependent. Since the input impedance of the dipole is
the quantity to be found, the dipole is assumed to be a radiating
antenna with a known voltage excitation V at the center port. This
source is modeled with a delta gap voltage. When the current distri-
bution is determined, the input impedance then follows directly from

Zin = V/Ig (52)
where Ig is the current at the generator port.

The [AZ] matrix is calculated by the same method as [Z] except
that the E-field which is reacted with the expansion modes is the field
that is scattered from the cylinder instead of the direct field from
the test dipole mode. This scattered field is the one resulting from
the cylinder being illuminated by the field from the test dipole
source. To find this scattered field the methods of GTD are applied.

To find a particular [AZ] term, the scattered field must be
reacted with the expansion current on the receiving mode dipole. This
again is an integration given by

Azjk . f;(l) ’ Ik“) av (53)
Rec”™Mode k

mode dipole k and E3 is the field scattered from the cylinder when

where Iy (%) is theEgiecewise sinusoidal distribution on the receiving
illuminated by the %est source Ij(l) which also has an assumed piece-
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wise sinusoidal distribution. This integration is carried out
numerically using the Newton-Cotes equation after ES(&) has been
determined. In the computer program, these mode-to-mode AZjk's are
found by combining the appropriate segment-to-segment mutual impedance
terms. Again, this procedure is modeled after Richmond's thin-wire
program. Each mode impedance term results from the superposition of
four segment impedances making it possible to have two segment "Vee"
dipole modes or dipole modes which are not linear. Vee dipole modes
would be necessary in a more complex antenna structure than the dipole
now under consideration. Thus, what must be found with the aid of GTD
is the field scattered from the cylinder at points along the receiving
segment resulting from the test current on the source segment.

To find E>(2) using a GTD format would require breaking E° (%)
into three basic components as sketched in Figure 10. E3(%) contains
a reflected component originating from the source segment and reflect-
ing directly to the receiving or observation segment. E>(%&) also
contains edge-diffracted components originating from the source
segment and diffracting off the cylinder ends. Finally E3(%)
contains a creeping wave contribution coming from the source segment,
attaching to the cylinder, then propagating around the cylinder as a
surface wave and finally shedding to the observation segment. Other
components (such as from the source to an edge diffraction, to surface
wave to another edge diffraction, to the observation segment) are
possible but these contributions would be minute and are justifiably
neglected.

For the particular geometry under consideration, two assumptions
are made. The cylinder is assumed to be electrically long so that
diffraction from the ends is negligible, and the circular cylinder is
assumed to have a large electrical diameter so that the creeping wave
contribution is minute and may be ignored. These assumptions are made
to simplify the problem used to describe and explain the hybrid
technique and are not restrictions on solvable geometries. For the
case in study, the dominant contribution to the scattered field ES(&)
is the reflected field E'(2). The problem has been reduced to one of
finding the reflected field E'(2) at observation points on the
receiving segment given an incident field from the source segment. To
find this reflected field, GTD, (or in this case G0), is applied.

Referring to Section B of Chapter II, the GO field at an obser-
vation point (as shown in Figure 5) is

Lo
s _ Py P 3
E"(s) = E'(qp) - R |12 i (54)

(p7*s)(p*s)
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where E‘(Q ) is the field incident at the reflectlon Qg generated by
Y

the test current on the source segment where R is the
coefficient

B _ st sfr & & e
R = & & ~ B &y " [é ;;} : (55)

o1, E are defined in Equation (23). The field E’(QR) is known exactly
for a monopole segment with a p1ecew1se sinusoidal current distribution.
This field will be considered in detail in the next section. The
reflection point Qp is found by applying the technique described in
Section B of Chapter II. In applying Equation (54) two important
points warrant special attention. First, to find Qr on the cylinder,

a source and observation point must be specified. The observation
point presents no problem. In finding the segment-to-segment impedance
terms a numerical integration is performed over the observation
segment. The observation segment is divided into a specified number

of integration sampling points which also serve as observation points.
Specificatigon of the source point, however, poses a problem. The
source of E‘(QR) is actually distributed over the source segment, so

an assumption must be made that the source appears to radiate from one
specific point located on the source segment. This assumption allows ]
the location of QR to be determined. The next section discusses the |
actual choice of the source point location and the ramifications of
this choice.

adic reflection

The second important point for cons1derat1on involves the ray
optical nature of GTD or GO. The field E1(0g) is known at the
reflection point Qgr, but in finding EY(% on?y the copponents of E1(QR)
which are perpendicular (1) to the 1nc1dent ray path I
are used as seen in Equation (54). GTD does not provide a method of
including components of the field along the ray path. The assumption
that must be made, then, is that the ray path component of E'(Qp) is
negligible. That this assumpt1on is fairly accurate until the §1p01e
gets very close to the cylinder is demonstrated by the results
presented in the next section.

Once E' (%) is known, it is dotted with I(2)d% on the observation
or receiving segment. The segment-to-segment 1mpedance terms are
found by carrying out the integration indicated in Equation (53)
numerically. These terms are combined to get the AZ mode-to-mode
impedance terms, thus forming the [AZ] matrix. This matrix, repre-
senting the cylinder effects, is added to [Z] to form [Z'] the modified
impedance matrix which is solved in the normal moment method manner.
The matrix is inverted and multiplied by the voltage source column
giving the desired current distribution. The input impedance of the
dipole is found using the method described by Equation (52).
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B. Combining GTD With Thin-Wire Theory

The hybrid technique as described in the previous section is
applied to the problem shown in Figure 9 and the solution of the
problem is discussed here. The input impedance of the half-wave dipole,
axially oriented at a distance D from a perfectly conducting circular
cylinder of radius A, is calculated. The real and imaginary parts of
the impedance are determined as a function of dipole distance D from
the cylinder and are stored for plotting. The accuracy of this
method is checked by comparing the plot obtained by this procedure
with that obtained by an independent method.

The independent method is a solution by Ersoy and Wang [11].
The method consists of finding the solution of an axial dipole near an
infinitely long, perfectly conducting circular cylinder. This is
accomplished by a technique very similar to the hybrid technique
described in this paper. A delta impedance matrix representing the
cylinder effects is found via a moment method procedure. The method
incorporates the cylindrical Green's function in the kernel of the
integral equation. These eigenfunctions account for the cylinder.
To avoid the confusion of distinguishing between two hybrid type tech-
niques, this method will be called the "MM-eigenfunction" technique.

The MM-eigenfunction solution is obtained in the form of a
summation, and accurate results are obtained when sufficient terms are
included. The MM-eigenfunction solution is taken to be the correct
(exact) one. Figures 11a and b show the plots for the case A=A/2 and
D is varied from near zero to one wavelength. The agreement between
the hybrid solution and the MM-eigenfunction solution is good until the
dipole is less than 0.2X from the cylinder. The input impedance of
the half-wave dipole of diameter 0.0002X in free space with one piece-
wise sinusoidal mode is 73.22 + j 43.41¢. The vertical scales of the
plots are in ohms. The input impedance of the dipole is seen to be a
damped sinusoid oscillating about the free space value as the dipole
moves away from the cylinder. This is intuitively logical since the
energy reflected from the cylinder to the dipole should alternately
enhance and subtract from that of the free space dipole, thus modifying
the dipole current distribution and giving the resulting input
impedance plots.

Several other details of this problem should be discussed. The
MM-eigenfunction solution used assumed an infinitely thin dipole whose
current distribution was exactly cos kz in free space. Comparing
this solution with the hybrid solution required that the hybrid dipole
also have exactly the cos kz distribution. To accomplish this only
one mode was used to model the XA/2 dipole. The piecewise sinusoidal
current on this mode gave the desired cos kz distribution. This
restriction of one mode to model the dipole was recognized as a
detraction from the accuracy of the hybrid solution and provided
the motivation for finding another independent check as described
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shortly. Also, for these results, both the MM-eigenfunction and

hybrid solutions assumed an infinitely long cylinder. The hybrid
technique accomplished this by simply not including any edge dif-
fraction.

Another important detail, as pointed out in the previous section,
was the selection of a single source point on the source segment.
Its location was needed to find the field scattered from the cylinder
in the segment-to-segment impedance term calculations. A logical
choice, and the one used here to find the curves of Figures 11a and b,
was the center of the source segment.

Three reasons were postulated for the breakdown of the hybrid
solution when the dipole was closer than 0.2X to the cylinder. The
first, already mentioned, was that more modes might be required for
better accuracy. That is, segments shorter than 0,25) could be used to
model the dipole. The second reason was that the approximation that
the source emanates from the center of the segment became less accurate
as the dipole approached the cylinder. The third reason was that the
ray path component of E'(Qr) which GO ignores increased as the dipole
approached the cylinder. A1l three of these situations would be
improved if the dipole was divided into shorter segments. By doing this,
the ability to compare the results of the hybrid solution with those of
the MM-eigenfunction solution is lost since the MM-eigenfunction
solution requires only one mode.

Another independent method of calculation was formulated using
ground plane image theory. Richmond's thin-wires over an infinite
ground plane computer code {12] was the method used. Consider a
horizontal half wave dipole at a distance D above a perfectly
conducting infinite ground plane. This geometry is similar to that
of the dipole near the infinitely long cylinder of radius A as A gets
very large. So the hybrid technique may be compared with ground plane
image theory if a large enough radius is chosen. In fact, since the
differences to be compared are small, it is advantageous to eliminate
the approximation of large enough A as follows: The radius of the
cylinder appears in the calculation of the reflection point QR and in
the reflected field E(Qp) of the GO expression, Equation (54). The
reflection point calculation does not need modification for this
particular geometry since it will be independent gf the radius A, In
the spread factor part of Equation (54), p? and pp are the principal
radii of curvature of the reflected wavefront at the reflection point
Qr. They are given by Equation (23) for a spherical wavefront incident
and repeated here as
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1 1 1 sin 62 sinze]
—_— =+ +
ChY ; = cose1 R] RZ
""" 2
t 1 sinze2 sinze] 4 (56)
: + - — 56
cose’ Ry Ry RiR,

For a cylinder, Ry = = and Equation (56) reduces to

2 7
oy A 1 sin 62 ; 1 sin 62 -
r s 3 R i R 8
P1.2 coso6 1 cos 6 1

‘ The cylinder radius is Ry=A. As the cylinder radius approaches
; infinity, Ry*=, it becomes an infinite ground plane and Equation (57)
i becomes
~L-L (58)
B
P1,2

Using this in the hybrid program is equivalent to A==, Figure 12
! shows the geometry of this problem.

The ground plane image theory solution places no restriction on
the number of modes; modes were increased to three and input impedance
i plots were again determined. As illustrated in Figure 12 the segment
! length is d and the source point location on the segment is indicated
by Xxg. For the particular case that was run x,=0.5d. Since the focus
was on input impedance when the dipole was close to the cylinder, D
varied from near zero to only A/2. The real and imaginary components
of the input impedance were calculated by the two methods and the
resulting curves plotted as Figures 13a and b. The ground plane image
theory was considered correct and is indicated by the solid curve
while the hybrid solution is indicated by the dotted curve.

ki These curves demonstrated that the postulated improvement in

{ hybrid theory accuracy for an increased number of modes did not
materialize. This was explained partly by the fact that although the
segments were smaller and therefore the errors introduced due to the
previously discussed approximations were smaller, they added up to
about the same error when combined to include the entire dipole. To
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investigate the effects of the GTD approximations, the reflected field
along the dipole was studied. Specifically the component tangent to
the dipole, the one employed when integrating to determine the mutual
impedance terms, was calculated over the length of the dipole L. It
was hoped that a study of this aspect of the problem would lead to a
clear understanding of how GTD combines with the thin wire theory.

Figure 12 also applies to the problem of finding the E-field.
Figures 14a and b show the magnitude and phase of the E-field tangent
to the dipole as a function of field point location along the dipole.
The dipole was located at D=0.5) from the cylinder. The center of the
source segments was the location of the specified source point xy=0.5d.
The source of the field was the lowest dipole mode on the halfwave
dipole with segment length d=0.1251, Again, the hybrid solution was
plotted with dashed lines while the correct image theory solution was
represented by the solid curve. As was expected from the plots on
Figures 13a and b, for D=,5X the two solutions agree fairly well.
Figures 15a and b show the E-field for exactly the same case except
that the dipole was only D=0.1251 from the cylinder; agreement between
the two soluticns was expected to be worse for this case. From these
two sets of figures it was seen that the most severe problem was in
the E-field phase. Actually, it was surprising that the input

impedances found b{ the hybrid technique were as good as shown con-
sidering the E-field errors.

To check the effect of the varying segment sizes used to model
the halfwave dipole, variations of the preceding problem were solved
for smaller d values. Figures 16a and b show the magnitude and phase
of the tangential E-field when d was A/40, or 5 times smaller than the
previous situation. Again, D=0.125), x,=0.5d, A== and the image
solution was compared with the hybrid solution. The accuracy was not
greatly affected.

In order to apply GTD to these problems, it was assumed that the
field at the observation point due to a source monopole segment came
from a single point taken to be the midpoint of the segment. The field

was actually generated from current distributed over the source segment.

Since the current on the monopole segment was not symmetric about the
selected center point, it seemed reasonable that a more accurate
source point could be chosen. Several alternative source points were
tried, a logical choice was the point of equal moments. Figure 17
shows a piecewise sinusoidal distribution sin gx on a monopole segment
of length d. Equating first moments gave the following equation

xm d

X (xm-X)sin Bx dx = J, (x—xm)sin Bx dx.

X
m
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Carrying out the integration gave the following result

x, = .65966 d (60)

when d=0.1251, From this new source point location the tangential
E-field was calculated as previously described. Figures 18a and b
show the resulting curves, A1l other parameters were the same as
those for the solutions presented in Figures 15a and b. Comparing
these curves shows that the choice of source point location has a
significant effect on the E-field and has a correspondingly sig-
nificant effect on the input impedance. Figures 19a and b demonstrate
the extent of the effect of the source point location. The dramatic
change in the curves from such a slight shift in source point location
demonstrates the sensitivity of the hybrid solution to this parameter.
From this data it was concluded that an improved method for integrating
GTD with the moment method was essential if the desired accuracy was
to be obtained when the dipole was located close to the cylinder.

As mentioned previously, two important assumptions were made
in finding EV(2) using the GO expression. To find QR a specific
source point was chosen even though the actual source was distributed
over the entire segment. E'(QR) was the exact field at Qgp, but in
determining EV(%) only the components of E'(QR) which were perpen-
dicular and parallel to the incident ray path were used; the assumption
was that the ray path component of E'(QR) was negligible. A careful
look at the exact near field expressions from a monopole segment with
a piecewise sinusoidal current distribution showed how making both of
these assumptions could be avoided.
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The fields radiated from the monopole segments are given by

Richmond [2]. Figure 20 shows the z oriented monopole segment. The
piecewise sinusoidal current distribution is

I]sinhy(zz-z) + Izsinhy(z-z1)

z) = sinhyd (60)

where 171 or Iz is zero, y is the complex propagation constant, d is

the segment length, and zy 2 are the endpoints. The resulting fields
at any point (p,z) are ;

e =184 ey
By = Frpsinhyd é}e g8 ) il

~YR;
i (I] coshyd - 12) e cose,

_YRZ
+ (I2 coshyd - 1) e cose, (61)

and
-YRZ

R n e
Ez = W (I] - 12 COShYd) —-ﬁé—

-\(R.I .
e
-+ (12 - I-l COShYd) T (62)

where n is the impedance of the propagation medium. These expressions
are for a z oriented segment. They work, however, for a general
segment with any skewed orientation through a simple coordinate trans-
formation. To be correct, these E-fields are only complete when added
to the E-fields of a connecting monopole segment. These connected
monopole segments make a dipole mode that is used in the thin-wire
theory. The crucial fact to note about these E-fields is that they
may be separated into fields emanating from the two edeoints. More-
over, these separated field contributions have an e~Y®/R term multiplied
by a pattern factor form, and are recognized as spherical waves
emanating from the endpoints. These observations may be exploited
with remarkable results to improve the integration of GTD with thin-
wire theory. At the observation point on the dipole, the reflected
field fr(l{ will now be the superposition of the contribution from one
endpoint of the source segment plus the contribution from the other
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Figure 20. z-directed monopole segment source with
the observation point (p,z).
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endpoint. Each endpoint will have its own reflection point on the
cylinder. By separating the fields in this way the distributed nature
of the source has been properly accounted for. Less obvious is the fact
that the ray path components of the separated fields are zero so that
the assumption that they are negligible is exact. This will be demon-
strated later. Thus the incident field from the source segment at

the reflection points is separated to make it perfectly compatible

with the ray optical nature of GTD. In fact, for the special

geometry of the infinite cylinder radius, the hybrid solution is shown
to be in exact agreement with image theory.

This separation technique was applied to the same case previously
presented in this section. The tangent E-field along the dipole from
the Towest dipole mode for the three mode case was calculated and
plotted using the hybrid technique. The results for D=0.125X are in
Figures 21a and b. Although it is difficult to see, both a solid image
theory curve and a dashed hybrid solution are plotted on those figures.
For this case, the hybrid solution gives exactly the correct image
theory solution.

To analytically justify these surprising results a careful look
at the E-field expressions is required. Working with the combined
monopole segment fields of Equations (61) and (62) is complicated.
Figure 22 shows the geometry of a center-fed linear dipole where the
monopole segments are considered together. For a piecewise sinusoidal |
current distribution j

T(e) - 21, s1n[k(d-]z-22])] | o
sin kd
where k = o e,
Richmond [13] gives the following rigorous fields

E¢ =0 (64)

in 1, -3kRy
f T Tmpsinkd |® €%

'ijz -ij3
- 2 cos(kd) e Cose, + e SuE g (65)
in 1 -JkR, -3kR,
= 0 e e
e-ij3
TR ; (66)
3
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t Figure 22. Z-directed center fed dipole source 5
¥ with observation point (p,¢,2). :
|
Ff ; when fields from two connecting monopole segments are combined these |
Pkt expressions are derived directly from Equations (61) and (62). Again,
: the fields may be separated into contributing fields from zy, zj
; and z3. Justification of the separation technique as well as
3 demonstration of zero ray path contribution can be shown by proving

the following hypothesis:
i
| ~ ,,7 -~ ~ ~
?, E(p,2) = Ep p + Ez z 2 E]t,+E2t2+E3t3 5 (67)

' That is, the total field at the observation point is postulated to
Ei be the superposition of contributions from the two endpoints and the
feed point. In addition the total field is said to be contained in
[ components which are only transverse to the ray paths. In Equation C
: (67) E, and E; are the known total fields given by Equations (65)
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and (66). Let E; be the contribution from point i transverse to ray

path i (i=1,2,3). From the geometry in Figure 22 after some
trigonometry

E; = Ez(Ri) sine, - Ep(Ri'ei) cose; . (68)
Specifically,
= j“ Io e-JkR] :
B1 7 Zosinkd TR ST
jn I -jkR
0 1 2
- m e CcoS 9-' (69)

jn 1 JkR,
E, = - g - 2cos(kd) & sine
2 Trsinkd Rz 2

in 1, iRy > ‘;
~perrial - 2cos(kd) e cos“e, (70) }
i
2
: -jkR
B o S i sine
3 4nsinkd R3 3
jn 1 -jkR
3 Inps?‘nlid (e : °°5263) . (1)

To verify Equation (67), Ey, Ep, and E3 should give the total field
E; and Ep. Using geometry again

E; = Ey siney + E2 sine2 + E3 sineg. (72)
Also using p = Rysiney = Rpsingp = R3s£ne3 in Ey, E, and E3 and the
trigonometric re}ationship sinZe + cos?e = 1, Equation (72) can be
shown to be equal to Equation (66). Similarly

Ep = - Ejcos8) - Epcosep - E3cosej (73)
is equal to Equation (65). Thus Equation (67) is verified and the

hypothesis is proved demonstrating analytically the exact agreement
between the hybrid technique and image theory.
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To relate this tangential E-field result back to the input
impedance calculation, the case of a half-wave dipole near the infinite
ground plane was run with the endpoint separation technique incorporated
into the hybrid technique. The real and imaginary parts of the input
impedance were plotted versus dipole distance from the cylinder in
Figures 23a and b. The agreement between the image and hybrid solution
was nearly exact, which is a very significant improvement.

The hybrid technique has been described in detail. A method
for combining GTD with thin-wire theory has been demonstrated which
integrates the two so that the necessary GTD assumptions do not
hinder the results. In the next chapter the case where wire antennas
are near a curved surface will be examined.
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CHAPTER 1V
WIRE ANTENNAS NEAR CIRCULAR CYLINDERS

In this chapter the hybrid technique will be used to solve
electromagnetic problems such as wire antennas near circular cylinders.
The objective in this chapter is to demonstrate the capabilities and
accuracy of the hybrid technique. To accomplish this all of the results
to be presented will compare the hybrid technique solution with results
obtained for the same or similar cases using an independent method.

The desire to compare with an independent method is the main reason
the particular geometries (e.g., circular cylinder) have been chosen.
The hybrid technique as described in the previous chapter can be
applied to much more complicated geometries than will be shown here,
but independent checks are not readily available.

Three orthogonal directions or orientations can be identified in
relationship to the cylinder. These orientations are axial (parallel |3
to the axis of the cylinder), radial (perpendicular to the surface of 3
the cylinder), and circumferential (tangent to the surface and
perpendicular to the axis). Antennas or radiators are chosen with
orientations to match one of these three directions with respect to
the cylinder. The reason for choosing orthogonal orientations to
demonstrate the hybrid technique is obvious. If the method can
correctly solve these three independent orientations then it can
solve any arbitrary combination of them in the presence of the

cylinder. Subsequently, a general radiator can be solved with
confidence.

The electromagnetic problems solved in this chapter will all
involve the calculation of input impedance of the radiator as a
function of distance from the cyiinder. The hybrid method is capable
of solving for many other electromagnetic parameters such as near
or far field, current distributions, scattering data, patterns, as
well as input impedance. There are three reasons for choosing to
find input impedance. To determine input impedance, the current
distribution is first found. If the current distribution is known, all
the other electromagnetic parameters follow easily. So finding input
impedance shows that the other parameters could also have been accurately
determined. The second reason is that input impedance is a measurable
quantity and one which can be compared with other literature. The third
reason is that the current distribution and correspondingly the input
impedance of the radiators is very sensitive to the location of the 1
nearby circular cylinder. Thus, solving for input impedance is a 3
good test of the capabilities of the hybrid technique. ! 3
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Finally, circular cylinders are picked as the curved surface
whose presence is to be included for the following reason: GTD and
therefore the hybrid technique is capable of solving many canonical
(and combinations thereof) problems, but, the circular cylinder
is one for which other solutions are available. The computer program
developed using the hybrid technique of Chapter III and the theory of
Ch?ptgr IT is capable of solving an arbitrary radiator near an elliptic
cylinder,

In developing the computer programming to solve electromagnetic
problems using the hybrid technique, an effort was made to keep the
expressions and possible geometries as general as possible. The
objective was to develop a program capable of handling as broad a
problem type as possible. To achieve this, the thin-wire program of
Richmond [2,3] was chosen as the starting point for the moment method
formulation of the problem. Some reasons for that choice are based
on the use of piecewise sinusoidal basis functions as was discussed
in Chapter II. Another reason is because of the wide familiarity, |
acceptance, and use this thin-wire program has. The hybrid computer
program is outlined as follows: A wire model of the antenna structure
geometry is inputted. The necessary specifications characterizing
the curved surface are also read in. The antenna structure is sorted
and the thin-wire modes are set up. The free space impedance matrix
is then found. Next various appropriate subroutines are called to
find the modifications to [Z] due to the curved surface starting with
the GO routine. The subroutines to find the modifications use GTD
programs modified from ones developed by Burnside, Marhefka, Greer,
and others at the Ohio State University. The programs.use expressions
from a paper by Kouyoumjian and Pathak [5]. The [Z'] matrix is
calculated and the current distribution is found. The hybrid program
was used on a modified Datacraft computer.

Four specific geometries will be studied in this chapter. Three
independent methods of solution will be used to test the hybrid
solution. These methods will be discussed as they are used. The
agreement between these methods and the hybrid technique, as will be
shown by the results in this chapter, strongly support the statement
that an accurate method for combining the moment method treatment
of wire antennas with the GTD for curved surfaces has been found.

A. Axial Dipoles

In this section the results of applying the hybrid technique to
axially oriented dipoles a distance D from a perfectly conducting
circular cylinder of radius A are presented. The general geometry of
the problem is illustrated in Figure 24. The dipole antenna is half-
wave length in extent and the diameter is .0002A. MNote that the
circular cylinder is labeled infinitely long. This is rigorously true
but in practice as long as the cylinder extends approximately one
wavelength or more past the dipole it appears to be infinitely long as
far as the dipole's current distribution is concerned. This statement
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will be supported by th: results in the finite cylinder section of
this chapter,

As discussed in Chapter III an MM-eigenfunction solution by
Ersoy and Wang [11] is available for axially oriented dipoles near an
infinitely long, perfectly conducting, circular cylinder. The solution
is found by summing sufficient terms to evaluate an integral expression.
The integrand contains a Green's function for the circular cylinder.
The dipole has a cos(kz) current distribution. This MM-eigenfunction
solution can be considered exact and is a perfect independent method

to check the hybrid solution against. The restriction is that in order
to achieve the cos(kz) current necessary for correct comparison the
hybrid technique must use only one mode or two segments to model the
half-wave dipole.

S dadaia it Dol s L R o e A

The first results comparing the hybrid technique with the MM-
eigenfunction solution are shown in Figures 25a and b. The real and
imaginary parts of the input impedance of the dipole were plotted vs.
dipole distance from the cylinder D. For this case D was varied from
near 0 to onehalf wavelength and the cylinder radius was one wavelength.
The vertical axis are in ohms, the solid line is the MM-eigenfunction
solution, and the dotted curve is the hybrid solution. The two methods
give basically the same result. The largeness parameter for the GTD,
or in this case the GO, part of the hybrid solution is kA. k is the
wave number equal to 2n/A. A is the cylinder radius given in wave-
lengths. GTD uses an asymptotic approximation which is good when the
largeness parameter is greater than one. For the case A=1.0A shown in
Figures 25a and b the largeness parameter is about 6.3, much larger ]
than one and the excellent agreement follows.

To demonstrate the effect of this largeness parameter on the
hybrid solution three more cases are presented. Figures 26a and b show
the input impedance when A=0,5X, Figures 27a and b show the effect
when A=0,.25) where kA is still greater than one. Finally Figures
28a and b show the input impedance curves calculated by the two methods
when kA=.785. This last case has violated the largeness parameter con-
straint yet the agreement between the MM-eigenfunction and hybrid solu-
tions is still fairly good. Comparing the amount of error in the hybrid
solution for these cases as kA gets smaller it is seen that the GO
breaks down gracefully. One can push the hybrid technique as far as is
consistent with the desired accuracy of the particular application and
not worry about sudden breakdown.

When the cylinder radius is very large the MM-eigenfunction solu-
tion needs more terms to converge. For this reason and the need to
verify the accuracy of the hybrid solution when the dipole is modeled
with more than one mode, the method will be compared with a ground
plane image theory solution. In Chapter III the image theory method
was discussed. As A goes to infinity the cylinder opens to an infinite
planar conducting surface or ground plane. Richmond has adopted his
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thin-wire program to handle this geometry [12]. Solving the case
illustrated in Figure 24 when the cylinder radius was A=10.0 gave the
curves shown in Figures 29a and b. The solid curve was calculated
using ground plane image theory. Again, the dotted curve is the hybrid
solution. In each of these methods the dipole was modeled with four
segments resulting in three modes. The agreement is seen to be nearly
exact.

No matter how satisfying analytical comparisons are, experimental
verification remains an undisputed and effective method of testing a
solution. It is, as for the case of the square loop of a later section,
often the only independent method available for checking. Partly as
further verification of the results already shown in this section and
partly as a test of the measurement setup, experimental measurements
were made to determine the input impedance of the axial half wave dipole
3 located near a circular cylinder., A great deal of effort and planning {
3 ’ was given to the design of an experimental setup with the hope that |
~! sufficiently accurate measurements could be achieved in a short time.

! { Accurate measurement of the input impedance of a balanced
E ] feed antenna, such as a dipole, is very difficult because the effect
‘ of the feeding cable and balancing device cannot be found exactly and
thereby be eliminated. To avoid this problem a monopole over a ground
plane was used and equated to the dipole case by doubling the measured
monopole input impedance. The infinitely long cylinder was, of course,
approximated by a long cylinder mounted over the ground plane. Since
impedance as a function of dipole distance was desired either the
monopole or the cylinder had to move. The cylinder-ground plane
i junction was critically important and the monopole was much smaller,
' so the cylinder was fixed and the monopole was moved. Knowing tiat the
3 same setup was also to be used for the square loop, the monopole
a9 locations were carefully chosen. Eight locations were determined to
be the maximum number allowable so that the adjacent mounting holes
! would not interfere with a measurement. The holes were located on a
i spiral which tappered in towards the cylinder in such a way as to
| result in equal clearance angles between the square loop locations.

| The size of the various components of the setup as well as the
> selected frequency of operation were dictated by the available material,
practical mechanical and electrical sizes, and the available test
: equipment. The four foot by four foot ground plane sets a lower Tlimit
i on the frequency since the plane had to be about two wavelengths or
! more to appear infinite. A five inch diameter cylinder was the
i largest diameter available and since a sufficiently large kA was
b desired, the five inches was picked to be one-half wavelength.

A high frequency limit of the experimental setup was the diameter
of the monopole. The N-type connector used to attach the monopole to
the ground plane had a center wire diameter of one-eigth inch. To
avoid a discontinuity right at the feed point the monopole diameter
was chosen also to be one-eighth inch. Thin-wire theory as used in
the hybrid technique restricts wire radii to be less than about .007X.
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The frequency of operation to make the five inch cylinder one-half wave-
length is 1.1811 GHz. At this frequency the monopole diameter is a
.00635A, Thus the dimensions and frequency are fixed. In order to |
be equivalent to the half-wavelength dipole, the monopole was cut to
one-quarter wavelength or 2.5 inches. A1l of the above components were
carefully machined to the specified sizes and assembled to make good,
smooth electrical contact which was necessary because of the high
operating frequency. The cylinder and ground plane were aluminum and
the monopole was brass. The conductivity of these materials was

high enough to be assumed perfect.

Measurement of input impedance was accomplished indirectly by
equipment used to accurately measure the reflection coefficient at the
monopole port. Figure 30 shows a schematic of the equipment used in
the measurement setup. Figure 31 shows a picture of the actual
equipment as set up during a measurement. Note that the equipment is
located under the ground plane so that it cannot interfere electrically
with the measurement. Figure 32 shows the various radiators, which
were used located about the cylinder.

Again input impedance was found by measuring the complex
reflection coefficient referenced to a short on the surface of the
ground plane. The signal source was a sweep frequency generator with
circuitry to lock the signal level over a frequency band. The generator
fed an s-parameter device which contained a line strecher to match
the test line with a reference line over a frequency band. The
s-parameter device had an attached coupler which compared the test and
reference signals and sent a complex voltage proportional to their
difference to a signal analyzer with display units. The display unit
then allowed the signal to be pictured on a CRT magnitude and phase
plot or to be read accurately in dB on a magnitude and phase meter.

The measurement procedure went as follows: the antenna and
cylinder were secured in the position for the measurement. A sweep
frequency signal from 1.0 to 1.4 GHz was fed to the antenna through
the s-parameter device. Using the CRT display, the line stretcher
was adjusted so that a short at the antenna port appeared as a single
point at 1.0/180°. The short was then removed and the reflection
coefficient was observed on the CRT over the frequency band to insure
that no problems (i.e., glitches or discontinuities) existed in a
frequency range about the frequency of interest, 1.1811 GHz. The
generator was then adjusted with a frequency counter for the CW signal.
The display meter replaced the CRT and the reference levels were
adjusted while measuring the short. With the short removed the
reflection coefficient was measured accurately on the most sensitive
scale settings. Environmental effects such as unwanted reflections
were checked using a reflecting disk. The measurements made using
this procedure and equipment proved to be very stable and repeatable.
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To convert the reflection coefficient R to the input impedance,
the following formula was used:

b AR |
" TR (74) 1

where Zy is the characteristic impedance of the connectors and cables
attaching the signal source to the monopole (Zp=50%).

To compare with experimental measurements several adjustments
to the dipole data inputted to the hybrid technique are necessary.
There are no modes in the physical setup but the number of modes used
in the hybrid technique has a significant effect on the input
impedance. To determine the number of modes necessary to get a
converged number, the input impedance of the dipole was calculated with
D fixed at approximately 0.625) and the number of modes was varied from
one to twenty five. The resulting plots for real and imaginary part of
Zin are shown in Figures 33a and b. Note that the vertical scales have
been greatly magnified to exaggerate the effect. Choosing 9 modes to
model the dipole will result in the real part being only 0.7% below
the 25 mode value while the imaginary part will be within 3.0%. The {
choice of 9 modes is thus justified.

Another adjustment which must be made is the diameter of the

- dipole to 0.0125A, This results in a length to radius ratio of 40 for
the dipole. This is small enough to be considered moderately thick.
Two effects may be significant for a thick dipole. E-field fringing

is one which thin-wire theory correctly handles if sufficient modes are
used. End capacitance is the second effect due to charges on the ends.
However, one of the thin-wire assumptions is that the current goes to
zero at the ends of the dipoles. Forcing the current to zero at the
end incorrectly eliminates the end charge effect. A reasonable approxi-
mation to improve the model to more closely fit the physical conditions
which lets the current be non-zero at the ends is made. The current is
allowed to spill over the edge of the end and go to zero at the center.
To approximate this with the thin-wire part of the hybrid program, the
antenna length is extended by the amount of one radius at each end.

The experimental measurements are now compared with the hybrid
technique solution. Figures 34a and b are the resulting plots. The
agreement between the measurement and the theory are quite remarkable.

Without discussing why at this point, measurements were made on
a monopole with a radius four times smaller. This monopole would be
considered thin but the above presented length adjustment was made
regardless. Its effect was much smaller as expected. The plots
comparing the hybrid technique with measurements for this thin dipole
are shown in Figures 35a and b. Again, the agreement is very good with
the absolute values almost matching as well as the variations matching
quite well,
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In this section then, the hybrid technique has been shown to
give excellent results for an axially oriented antenna near a circular
cylinder. The results were checked with three independent solutions.
The method was found to be quite accurate with cylinders of radii from
extremely large values down to only 0.125A,

B. Radial Dipoles

The second radiator orientation which will be considered is
the one radial to the cylinder. The antenna will be a radial dipole
whose center feed point is located a distance D from the infinitely
long perfectly conducting circular cylinder. The geometry of the
problem is illustrated in Figure 36. The objective is, again, to
find the input impedance of the halfwave dipole using the hybrid
technique as D is varied from nearly one-quarter wavelength to three-
quarters wavelength. In this case only one independent method for
checking the hybrid solution is available. This is the ground plane
image theory solution as described in Chapter II and also in the
previous section. It provides a check when the cylinder radius A is
large.

This geometry is a very special case, one for which the usual
GTD or GO does not work. A study of the geometry as shown in
Figure 36 shows why. Consider any point on the dipole as a
source point and any other point, also on the dipole, as an observation
point. The reflection point on the cylinder is obvious and is the
same independent of where the source and observation points are on the
dipole. The reflection point is where a straight line extending the
dipole to the cylinder surface would touch. The incident and reflected
ray paths both 1ie on this line and point in opposite directions. As
discussed in some detail in Chapter II, GTD or GO does not consider
field components along the ray path but only ones transverse to it. In
fact, fields along the ray path are ignored at the reflection point by
dotting the incident field at the reflection point with vectors
perpendicular to the incident ray path. In finding the segment-to-
segment delta impedance matrix terms, only the reflected field com-
ponent along the observation segment is used. For this geometry the
observation segment is coincident with the reflected ray path. GTD
or GO gives only the components of the reflected field transverse to
the observation segment thus giving all zero delta impedance matrix
terms. The overall effect is that the hybrid technique using the GO
as described thus far will predict no change in input impedance due

to the presence of the circular cylinder. This is, of course, wrong.

To demonstrate the problem discussed above, the input impedance
of the radial dipole was calculated and plotted as D varied. The
results are shown in Figures 37a and b where the solid line is the image
theory solution and the dotted line is the hybrid technique solution.
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As predicted, the hybrid solution incorrectly gives no effect from
the cylinder and the components of the input impedance remain constant
at their free space values as the dipole moves.

This geometry with a radial radiator is a special case that can
be handled by a modification or extention of GO. The method of ex-
tention will be discussed shortly. The solution to the problem then
is to recognize this special case and solve it separately. The as-
sumption in this proposed solution is that the normal hybrid technique
GO contribution gives an accurate solution right up to a delta variation
of an exactly radially oriented radiator. To check this assumption the
case illustrated in Figure 38 was solved. The radial dipole is tilted
5.0° away from the exactly radial orientation. D was again varied and
the real and imaginary components of the input impedance were found
using the hybrid technique and ground plane image theory. Figures 39a
and b confirm the expected results that the hybrid technique holds up
to a small delta variation from the exactly radial orientation.

So that this special case can be handled, the extension of GO
will now be described. Suppose in some manner it has been determined
that an exactly radially oriented segment is found. For this segment
a ray path component of the E-field is allowed. How this field
component reflects at the surface of the cylinder must be specified.
Image theory shows how the component reflects from a planar surface.
Except for a spread factor due to the curvature of the surface, and
a slight change in the phase path length, image theory is correct. A
reasonable assumption then, is that the component along the ray path
reflects as image theory at the surface and then scatters as from a
plane surface. Since the ray path vector lies in the plane of in-
cidence or reflection it reflects like the paraliel component which
also lies in that plane. That is the reflection coefficient is +1.0.
Since the interaction between a radially directed segment and the
cylinder is small the image theory extension of GO should be quite
good for large diameter cylinders, and become less accurate for small
diameter cylinders.

To confirm the accuracy of this extended GO methes the first
problem considered in this section was again solved. Since all of
the segments have exactly a radial orientation so that the segments
are colinear with the ray path, the special geometry is recognized.
Ray path components of the E-fields are then included in the hybrid
program like parallel components as described above. The new
solutions are shown in Figures 40a and b, The good agreement demon-
strates the validity of the method of extending GO at Teast for large
A.

A second method for extending GO or handling this special
case where GO does not give answers is also possible. Again, as-
suming the special case has been recognized, the problem segment
could be perturbed in orientation to be slightly off the ray path
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direction. The geometry can now be handled by the normal hybrid
technique GO. The result will be slightly in error due to the
intentional perturbation of the segment orientation introduced.
This method has the advantage that the curvature of the cylinder
is treated.

To incorporate this special handling technique in the general
hybrid program, the geometries for which it is necessary must be
identified. The two cases for which it must be used are when the
observation segment is colinear with a reflected ray path or when the
source segment is colinear with an incident ray path. The endpoints of
the segments and the reflection points are known. In three dimensional
geometry the line passing through the two endpoints can be written in
parametric form. The reflection point can then be checked with a
simple logic test to determine if it is colinear. If not, the normal
GO is used but if it is colinear the special extended GO is applied.

Even though radially oriented antennas present special problems,
the results in this section demonstrate that the hybrid technique can
appreximately solve them. This is accomplished by a modification or
extension of GO.

C. Square Loop Antennas

The last of the three orthogonal orientations which must be
tested and verified is the circumferential or phi oriented radiator.
The choice of antenna with a strong phi component was given a great
deal of thought. It was desired to test the hybrid solution for a
small cylinder radius as well as a large one.

Ground plane image theory provides the method of comparison for
large radii. No antenna with an analytical solution was found when
the radius was small. One which allowed experimental verification was
then desirable. The square loop oriented as shown in Figure 41 near
the circular cylinder fits the bill. The x-y plane cutting the
geometry gives the necessary image symmetry to eliminate the balanced
feed problem. A square half-loop and cylinder can be mounted on a
ground plane. The square loop has one half of its extent almost phi
oriented giving the required strong circumferential components. The
square loop antenna was examined quite extensively by Richards [14].
Some of his results were used as a check on the programs of this
section before the cylinder effects were included.

A Took at the admittance of the square loop as a function of
frequency in wavelengths is useful. Figures 42a and b show the con-
ductance and susceptance of the square loop for a varying frequency.
The wire diameter of the loop is one-eighth inch in anticipation of
the experimental Toop. The Toop perimeter was 10 inches making it one
wavelength at 1.1811 GHz. The vertical scales are in mill-mhos.

These curves agree quite well with results by Richards. Maximum
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admittance will give minimum impedance which is desirable so that
the antenna will radiate. The frequency of 1.1811 GHz is chosen
where the perimeter is one wavelength, The loop's dimensions have
now been specified.

The hybrid technique will first be applied to the geometry of
Figure 41 when A is large, A=£,0A., The results are compared with
the ground plane image theory solution in Figures 43a and b. The
real and imaginary components have been plotted as a function of
square loop distance D from the circular cylinder. Note that the
imaginary impedance is negative for the loop. The agreement is almost
exact verifying the hybrid solution for large A.

Next, the results for A=0.25X will be presented by comparing
the hybrid solution with experimental measurement. The techniques and
procedures described in section A for the experimental setup were used.
The impedance of the square loop was found by measuring the reflection
coefficient of a square half-loop mounted over the ground plane.
Figure 32 shows a picture of the loop. The wire diameter was
one-eighth inch so the feed point was continuous. The other end of
the Toop was screwed to the ground plane to make a good connection.
For the analytical solution, the mode stability was again studied with
the results in Table 1. Although it appears that 16 modes are not
enough for the real part to be accurate, this number was used in the
interest of computer running time economy.

Table 1
Number of Modes Loop Impedance
Modeling the Loop Re(Z. ) Im(Z; )
in in
16 88.93 -130.35
32 82.62 -128.66
48 77.41 -128.09

The results comparing the hybrid technique with the experimental
measurements are shown in Figures 44a and b. The curves track the
measurements quite well but the levels are shifted making the number
values disagree. This level shift was disturbing when the remarkable
results of Section A were recalled. No equivalent reasoning such as
adjusting the dipole length for end effects could be found for the
Toop.

It was postulated that the thickness of the wire might be causing
the corners of the loop to be inadequately modeled. To check this,
a loop with wire thickness four times smaller was investigated. A1l
dimensions were the same except the thin loops wire diameter was
1/32". The admittance curves for the thin loop case are shown in
Figures 45a and b. Note that 1.1811 GHz is still a good frequency
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choice and resonance is much sharper than for the thick loop. Figure
46 shows a picture of the thin loop. The end opposite the feed point
is soldered to a brass screw set in the ground plane. Mode stability
was again studied with the results in Table 2. The sixteen modes for
the thin loop is more accurate than for the thick loop.

Table 2
Number of Modes Input Impedance
Modeling the Loop Re(Z. ) Im(Z.)
in in
16 101.255 -139.802
32 99.379 -139.315
48 98.454  -139.199

The results for the thin loop case, comparing the hybrid
technique with experimental measurements are shown in Figures 47a and
b. The postulated improvement did not materialize. The curves, again,
track the points well but a level shift is still apparent.

During the measurement process it was observed that a slight
change in frequency resulted in a significant change in the input
impedance. This follows logically from the admittance curves where
it can be seen that the operating frequency is at a rapidly varying
point. The inability to get exact level agreement is at least partly
explained by the sensitivity at the frequency of operation. An
attempt was made to avoid this problem by carrying out the measurements
at a frequency low enough to be away from the sensitivities of
resonance. A frequency of 885.8 MHz was chosen which can be seen from
Figures45a and b to be well off resonance. The results are shown in
Figures 48a and b. Agreement is quite erratic. The problem is that
Zjn for this off resonance case is very large compared with the Zo=50%
of the connecting cable. The mismatch causes much of the energy to
reflect back down the line and very little radiates. Small radiation
means weak interaction with the cylinder. The measurement environment
is too noisy and the equipment is too inaccurate to measure this weak
interaction properly.

In an attempt to further investigate the problems around
resonance by measuring free space loop's input impedance over a fre-
quency band the real problem was discovered. The section of line
connecting the antenna to the s-parameter device is assumed to be ideal.
Only its length is compensated for by setting the reference to a
short at the antenna port. It was found, however, that this section
of line which was constructed of a group of connectors was not ideal.
Different connectors of the same type gave different amounts of phase
shift. The amount of change in phase was also dependent on how much
the antenna was radiating. Correspondingly, it was frequency de-
pendent. Physically, the difference probably resulted from the dis-

continuities where the connectors touched being unique to each connector.

The solution of the problem would involve using a more ideal connector

105




*49pul A3 ueau sue|d punoub uo doo|-jiey auenbs utyy °gy dunbir4

106




o

X X
(=]
o]
!,. e
o]
o
,‘! -
.
e
Zz8&
"" J
~N -
Ei’r 2a = /32"
L A = 0.25\
] —— HYBRID TECHNIQUE
o x X MEASUREMENT
:
& e
o' ] L Bl T 1 A\l T T v T L] v T L] T T L gy ¥ 1
0.000 0.250 0.500 0.750 1.000
D (WL)

Figure 47a. Real part of square loop input impedance
near cylinder of radius A=0.25x.

107

A PR

S SR AT sy e




A i b R R i IV Vi e

A

e FEN o st i
R ...4‘;'&»-7.-4&% e

sp.o
o

G
=i

-30.0
PR Ry RS N

"60-0

-80.0
O e e A [y (R Yol £ A VE (e [

IMAGINARY Z-IN

~120.0

-150.0

Figure 47b.

1
1.000

2a
A

|/32u
0.25)\

—— HYBRID TECHNIQUE
X X MEASUREMENT

Imaginary part of square loop input impedance
near cylinder of radius A=0.25A.

108

" o —

L—N " ‘;.——-4\‘

- . -‘I f}",ﬂl'.l 2 ‘:- ‘4‘... ,v. ’.‘ ‘. -




150.0

120.0

o]
=8 -
gl
F ! S
- Fo o
% &gg _ 2a = V/3p
| ' A =0.25\
% y —— HYBRID TECHNIQUE
o X % MEASUREMENT
m -~
.
= : L] L] Ll L] l L) L] AJ L] ' Ll ! ] L] v ' L Ll T = 1
- . 0.0‘0 0.188 0.375 0.563 0.750
j‘ D (WL)
Figure 48a. Real part of square loop input impedance
$ near cylinder of radius A=0.25x.
| 109
! ol
P

i

A N A S CH PR OO SPRS T o 8 P > R R TR




KL e S R

LA

-“5000
PR )| [ IR |

-“80- 0

-510.0

i g4

i S

IMAGINARY Z-IN
-540.0

~570.0

ORI R N O S TN SO L

2a = /32"
A = 0.25)\

HYBRID TECHNIQUE
X X MEASUREMENT

-600-0
o
c
(=]

Figure 48b.

Imaginary part of square loop input impedance
near cylinder of radius A=0.25x.

110

v, .




in this critical part of the setup. Remeasurement was not necessary
here because the results already show that the hybrid technique works
very well and has been experimentally verified.

Thus, phi oriented radiators have been checked for both large and
small cylinder radii. The hybrid technique has now been demonstrated
to be accurate for all three orthogonal orientations. Its use on
arbitrary radiators near the circular cylinder can now proceed with
confidence.

D. Finite Length Circular Cylinders

In this section finite length cylinders will be handled using
the hybrid technique. To account for the finite cylinder length, the
GTD for curved edges is used as described in Chapter II to find
delta impedance matrices as described in Chapter III which properly
modify the free space matrix to include the cylinder end effects. The
formulation of the part of the hybrid technique which finds the cylinder
end effects is modeled after the part which finds the reflection effect.
The formulation was described in detail in Chapter III.

To test the finite cylinder capability of the hybrid technique,
it was applied to find the input impedance of an axially oriented
dipole. One reason for picking this radiator orientation was that
the diffraction points on the cylinder's edges were known directly.
The problem's geometry is illustrated in Figure 49. The diffraction
points are on the cylinder's end edges in the x-z plane with x positive.
The cylinder half height is CH, its radius is A, and the half-wave
dipole is a distance D from the cylinder. For the cases in this
section, A will be fixed at one-quarter wavelength.

The only analytical method available for solving a finite
cylinder, other than the hybrid technique, is the moment method.
Computer Timits on storage and running time prohibit its use on a
cylinder as electrically large as the case to be solved. So no inde-
pendent method is available to check the hybrid solution for this
geometry. Experimental measurement will prove impossible because
the effects of the finite ends will be too small to measure accurately.
The method chosen to verify the results was to compare the hybrid
method solution of the finite length cylinder case with the hybrid
solution of the infinite length cylinder. Intuitive observations will
then be made.

The first results to be presented are for a cylinder height
CH=0.375x where D is varied from near zero to one wavelength. The
input impedance plots are given in Figures 50a and b. The solid curves
are for an infinite length cylinder. Chopping the cylinder off
creates a small perturbation in the input impedance of the dipole.

This result seems reasonable,

m

e g T v a s il i




3 A z ‘
| AL S e |
E ol
E
E | s A et S

' 0.0002 x_._f‘_

|

: N> DIPOLE
! PERFECTLY CONDUCTING,
| CIRCULAR CYLINDER |
4 ‘
Rp v | Figure 49. Axial half-wave dipole located near a
- finite length cylinder.
. 3
12 ' 1
i




L

E—— e —
o i

———
= g I o

=

T

e e
z = R

i

e
.

.
OR3P M =
L P, Py .
| Q— . .

o-
S
o-
“-
i
S
©
.
o
Z3 -
L. -4
o
ao] — INFINITELY LONG
W3 <===~ CH = 0.375)
e
o
Q-
o
o‘ Ll L] L] L] l ‘l L v L) l“'ﬁ' i SRR ) l_ e v v
0.000 0.250 0.500 0.750 i l 000

0 (WLJ

Figure 50a. Real part of axial dipole input impedance
near cylinder of radius A=0.25),

13




T

~y

N

ot < e B

100.0

75.0

1

IMAGINARY Z-~IN
50.0

25.0

!

L

L

L

— INFINITELY LONG
-=--= CH = 0.375)\

Figure 50b.

0.250 0.500 0.750
O (WL)

Imaginary part of axial dipole input impedance
near cylinder of radius A=0.25).

114

T L] v L L) " L] L . 3 i l L] L] L] L]

1
i.000




Another approach was tried to help verify the results. The
dipole distance from the cylinder was held fixed and the cylinder
height CH was varied from just above the dipole to one wavelength
higher. Figures 51a and b show the results for D=0.3XA, The solid
line is the finite cylinder case here. Figures 52a and b show the
case D=0.6X results. These two sets of figures are particularly
convincing in that the effects of the cylinder ends fade to zero as
the cylinder gets longer as it must.

Finally, from those curves another cylinder height CH=.45) was
picked and the input impedance was again found as D was varied. The
results are plotted in Figures 53a and b. Although the hybrid finite
cylinder solution has not been verified by an independent method,
the reasonable results of this section lend confidence to the solution.
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CHAPTER V
DISCUSSION

A hybrid technique has been presented which solves electromag-
netic problems in which an antenna or scatterer is located on or near
a conducting body. The general technique has been applied to find
the input impedance of various radiators located near a perfectly
conducting circular cylinder. The application of the hybrid technique
to these specific problems in no way implies restrictions on its use.
The method can be equally well used to find near and far fields,
current distributions, and scattering data for problems involving
conducting bodies of rather arbitrary shape.

The hybrid technique in this paper used the format of a powerful
thin-wire computer program to model the antenna structure. The free
space impedance matrix was found using the normal moment method
technique. Then the effects of the conducting body were incorporated
into delta impedance matricies. A delta impedance matrix was found
for each type of contributing scatter from the conducting body, such
as reflection, edge diffraction, etc. The delta impedance matricies
were added to the free space matrix to account for the conducting
body. The modified impedance matrix was then used in the normal moment
method way to find the current distribution and input impedance of the
antenna.

The delta impedance matrix terms were found by reacting an
expansion current with the E-field scattered from the conducting body
due to a test current source. Piecewise sinusoidal expansion and testing
functions were used. The GTD E-field at an observation or integration
point on the receiving mode was composed of the superposition of end
and feed point contributions from the source mode. Separating the
contributions in this way accounted for the distributed nature of the
source and resulted in spherical waves emanating from the points which
were completely compatible with the ray optical nature of GTD. This
way of combining thin-wire theory with GTD gave results that were far
more accurate than other formats. Analytical justification as well
as verification by example were presented in Chapter III.

The accuracy and facility of the hybrid technique were shown in
Chapter IV by solving for the input impedance of various radiators as
a function of their distance from a circular cylinder. Three
orthogonal orientations were identified and antennas to match them were
used. With the hybrid technique verified for these orthogonal orien-
tations, clearly a more general radiator with an arbitrary combination
of orientations could be solved with confidence.
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An axially oriented half-wave dipole near the circular cylinder
was solved by the hybrid technique. When the cylinder radius was
large the hybrid technique was compared with an image theory solution.
For small cylinder radii the hybrid solution was compared to an exact
MM-eigenfunction solution. In both cases the agreement was excellent.
For this orientation the solution was also compared with careful ex-
perimental measurements. The measurements were accomplished by
doubling the input impedance of a quarter-wave monopole mounted with
the cylinder over a ground and measuring the reflection coefficient.
Results for both a thick and a thin dipole agreed very well with the
measurements.

A radially oriented dipole presented a special problem in that
ordinary GO predicted no effect on input impedance when the dipole was
close to the cylinder. This incorrect solution was due to the non-zero
ray path E-field which GO ignores. GO was extended to include a ray
path field for this special orientation. The component reflects Tike
image theory at the surface and then scatters as from a plane surface.
Tilting the problem segment slightly from its exactly radial orientation
offered another solution. Comparing the hybrid solution extended in
these ways with image theory verified the techniques.

The circumferential orientation was verified with a square loop
lying tangential to the circular cylinder. For large cylinder radii
the hybrid solution agreed almost exactly with image theory. For
smaller cylinder radii the solution was compared with experimental
measurements made on a half-loop mounted with the cylinder over the
ground plane. Both the thick and thin loop solutions tracked the
impedance variations measured. The absolute levels were shifted
slightly for two reasons. The frequency of operation was near resonance
where rapidly varying impedance makes level matching difficult. Also,
a section of line which was assumed to be ideal had a frequency dependent
phase shift.

Thus, three orthogonal orientations were verified and the hybrid
technique was clearly shown to be very accurate. A finite length
cylinder was also investigated with the hybrid technique when an axial
dipole was nearby. The results were compared with the infinitely long
cylinder case. As expected, the finite length effects died out as
the cylinder became longer.

Several minor limitations and restrictions on the hybrid technique
can be pointed out. The antenna structure near the conducting body
is limited in electrical size since the antenna must be modeled by
wire segments no more than one-quarter wavelength in extent. The
number of segments determines the number of modes and correspondingly
the size of the impedance matrix the computer must work with. The
conducting body must be a canonical shape or combination thereof for
which GTD solutions exist for the canonical parts. Besides the field
expressions, a method of finding the specular points on the surface
must also be available.
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In spite of the restrictions discussed, a very powerful hybrid
technique has been presented for combining the moment method treatment
of wire antennas with the GTD for curved surfaces. The method has
been demonstrated to be accurate and versatile.
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